THE SEMICONDUCTORS-INFORMATION
Web-Site
http://www.semiconductors.co.uk
http://www.semiconductors-direct.com       http://www.semiconductorsdirect.com





PROPERTIES OF DIAMOND, SILICON and GERMANIUM
Many
Author - d.w.palmer@semiconductors.co.uk

When quoting data from here, please state the reference as
D W Palmer, www.semiconductors.co.uk, 2014.

Return to "SEMICONDUCTORS INFORMATION" Home Page






The information sources cited in the table below are listed at the bottom of the page.





LINKS









Would You Like to Advertise Your Semiconductor Products
and
Services
on this
Web-Site ?.

If so,
Please Click HERE.






OTHER LINKS






 

PROPERTY \ MATERIAL
.
DIAMOND
.
SILICON
.
GERMANIUM
.
Structure (All Cubic) Diamond Diamond Diamond
Space Group Fd3m Fd3m Fd3m
Lattice Parameter a0
at 300K
0.35668 nm 0.54311 nm 0.565791 nm
Ekins-Daukes, 2001
Madelung, 1991
Takamoto et al, 2000
Nearest-Neighbour Bonds:
Directions
and Angle Between
<111>,
109o 28min
<111>,
109o 28min
<111>,
109o 28min
Nearest Neighbour Distance
at 300K
0.15445 nm 0.235 nm 0.245 nm
Density at 300K 3.51525 g.cm-3 2.3290 g.cm-3 5.3234 g.cm-3
Atomic Concentration
at 300K
1.763x1023 cm-3 5.00x1022 cm-3 4.42x1022 cm-3
Elastic Moduli at approx 295K c11 = 1.0764 x 1012 Nm-2
c12 = 0.125 x 1012 Nm-2
c44 = 0.577 x 1012 Nm-2

(Grimsditch & Ramdas, 1975)
. . . . . .
Linear Expansion Coeff.
at 300 K
1.05x10-6 K-1 2.6x10-6 K-1 5.8x10-6 K-1
(Singh 1993)
LO Phonon Energy . . . 63.0 meV
(Singh 1993)
37.0 meV
(Singh 1993)
TO Phonon Energy . . . . . . . . .
Thermal Conductivity
at 300 K
ca. 25 W.cm-1.K-1 1.48 W.cm-1K-1 . . .
Melting Point 3773 K 1683 K 1210 K
Refractive Index at 546.1 nm 2.424 . . . . . .
Dielectric Constant at 300 K 5.70 (at 1-10kHz) 11.9 16.0
Nature of Energy Gap Eg Indirect Indirect Indirect
Energy Gap Eg at 300 K 5.47 eV
(Koizumi, 2003)
1.1242 eV
(Green 1990)
0.66 eV
Energy Gap Eg at ca. 0 K . . . 1.1700 eV at 4.2K
(Green 1990)
. . .
Effective Conc. Nc of CB states
at 4.2K
at 300 K
. . .  
 
4.55x1016 cm-3
2.86x1019 cm-3
(Green 1990)
. . .
Effective Conc. Nv of VB states
at 4.2K
at 300 K
. . .  
 
1.87x1016 cm-3
3.10x1019 cm-3
(Green 1990)
. . .
Intrinsic Carrier Conc. ni
at 300 K
. . . 1.07x1010 cm-3
(Green 1990)
. . .
PROPERTY \ MATERIAL DIAMOND SILICON GERMANIUM
Ionisation Energy of Nitrogen
as Donor
1.7 eV    
Ionisation Energy of Phosphorus
as Donor
0.59 eV
(Koizumi et al, 1997, 1998, 2003)
45 meV 12 meV
Ionisation Energy of Arsenic
as Donor
0.41 eV
(Barjon et al, 2014)
45 meV 12 meV
Electron Longit. Effective Mass
ml / m0
. . . 0.9163 at low T
(Hensel et al 1965)
(Green 1990)
1.64
Electron Transv. Effective Mass
mtr / m0
. . . 0.1905 at low T
(Hensel et al 1965)
(Green 1990)
0.082
Electron Density-of-States
Effective Mass m*dc / m0
at 4.2K
at 300K
. . .  
 
 
1.06
1.09
(Green 1990)
. . .
Electron Thermal-Velocity
Effective Mass m*tc / m0
at 4.2K
at 300K
. . .  
 
 
0.27
0.28
(Green 1990)
. . .
Electron Hall Mobility
at 300 K
ca. 2800 cm2.V-1.s-1 1600 cm2.V-1.s-1
for
n = 1.0x1014 cm-3
(Sze 1985, p. 33)
3900 cm2.V-1.s-1
for
n = 1.0x1015 cm-3
(Singh 1993)
Electron Hall Mobility at 77 K . . . Larger than
20000 cm2.V-1.s-1
for
n = 1.0x1014 cm-3
(Sze 1985, p. 33)
. . .
Ionisation Energy of Boron
as Acceptor
0.37 eV 45 meV 10 meV
Light Hole
Effective Mass mlh/m0
. . . 0.16
(Singh 1993)
0.044
(Singh 1993)
Heavy Hole
Effective Mass mhh/m0
. . . 0.49
(Singh 1993)
0.28
(Singh 1993)
Hole Density-of-States
Effective Mass m*dv / m0
at 4.2K
at 300K
. . .  
 
 
0.59
1.15
(Green 1990)
. . .
Hole Thermal-Velocity
Effective Mass m*tv / m0
at 4.2K
at 300K
. . .  
 
 
0.37
0.41
(Green 1990)
. . .
Hole Mobility at 300 K 130 to 2010
cm2.V-1.s-1
430 cm2.V-1.s-1
for
p = 1.0x1014 cm-3
1900 cm2.V-1.s-1
for
n = 1.0x1015 cm-3
(Singh 1993)
Hole Mobility at 77 K . . . . . . . . .
PROPERTY \ MATERIAL DIAMOND SILICON GERMANIUM
 



If you have relevant information that is additional or more recent,
please send it, with a publication reference, to the e-mail address shown at the top of this page.




  INFORMATION SOURCES :
Davies G (Ed.), "Properties and Growth of Diamond" (IEE/INSPEC, 1994)
Mayer J W and Lau S S,
. . . "Electronic Materials Science for Integrated Circuits in Si and GaAs"
. . . (MacMillan, 1990)
Madelung O (Ed.), "Semiconductors: Group IV Elements and III-V Compounds"
. . . (Data in Science and Technology: Springer-Verlag, 1991)
Singh J, "Physics of Semiconductors and Their Heterostructures" (McGraw-Hill, 1993)
Sze S M, "Semiconductor Devices - Physics and Technology" (Wiley, 1985)
 
  INDIVIDUAL REFERENCES
Barjon J, Jomard F & Morata S, Phys Rev B 89 (2014) 045201
Green M A, 1990, J. Appl. Phys. 67 2944 (contains data also for other temperatures)
Grimsditch M H & Ramdas A K, Phys. Rev. B 11 (1975) 3139
Ekins-Daukes N J (Imperial College, London, UK), 2001, Personal Communication
Hensel J C, Hasegawa H & Nakayama M, 1965, Phys. Rev. 138 A225
Koizumi S, Kamo M, Sato Y, Ozaki H & Inuzuka T, 1997, Appl. Phys. Lett. 71 1065
Koizumi S, Kamo M, Sato Y, Mita S, Sawabe A, Reznik A, Uzan-Saguy C & Kalish R, 1998,
      Diamond Relat. Mater. 7 540
Koizumi S, 2003, Invited Review presented at the Conference entitled
      "The Physics of Group IV Semiconductors", University of Exeter, UK, 07-10 April 2003
Singh J, 1993 "Physics of Semiconductors and Their Heterostructures" (McGraw-Hill)
Takamoto T, Agui T, Ikeda E and Kurita H, 2001, Solar Energy Materials & Solar Cells 66 511


 




Return to Top of this Page

Return to "SEMICONDUCTORS INFORMATION" Home Page


© D.W.Palmer, 1999-2022; 2022.06b             Our Privacy Policy