THE SEMICONDUCTORS-INFORMATION
Web-Site
http://www.semiconductors.co.uk
http://www.semiconductors-direct.com     http://www.semiconductorsdirect.com




PROPERTIES OF THE III-NITRIDE SEMICONDUCTORS

Author: d.w.palmer@semiconductors.co.uk
    There Have Been   Many   Hits on this page.
                  The number was 28623 on the 20th January 2009.


See below for Properties of
AlN,     GaN     and     InN.


These semiconductors have direct energy-band gaps,
and therefore they can allow the fabrication of luminescence devices that produce light at high intensity,
and their stabilities to high temperatures and good thermal conductivities
make them potentially valuable for the fabrication of high power transistors.

When quoting text or data from here, please state the reference as
D W Palmer, www.semiconductors.co.uk, 2008c.




Electronic Energy Levels in Group-III Nitrides
Derek W Palmer

in
The Elsevier Encyclopedia entitled
"Comprehensive Semiconductor Science and Technology"
(2011), Volume 4, pp. 390447
(Elsevier Publishers, Amsterdam) - Editors: Bhattacharya P, Fornari R and Kamimura H
Encyclopedia Details

SYNOPSIS
This Chapter, "Electronic Energy Levels in Group-III Nitrides", of the Encyclopedia is a detailed review of the published information concerning the electronic energy levels created within the valence-band to conduction-band energy gap of crystalline boron nitride, aluminum nitride, gallium nitride and indium nitride by the presence of lattice defects and impurities. Knowledge and understanding of the bandgap levels that can occur in these III-Nitride semiconductors are essential for producing effective p-type and n-type doping and for optimization of their properties, including electrical conductivity, carrier mobilities and optical luminescence, for their many electronic and optoelectronic applications. Theoretical and experimental data for the zinc-blende and wurtzite structures are considered in detail, and certainties and uncertainties concerning the energy levels and their likely impurity or defect identities are assessed.

Please send me a pdf copy of this paper.





Return to the "SEMICONDUCTORS INFORMATION" Home Page



PROPERTY / MATERIAL
.
Cubic (Beta) AlN
.
Hexagonal (Alpha) AlN
.
Structure Zinc Blende Wurzite
Space Group F bar4 3m C46v ( = P63mc)
Stability Meta-stable Stable
Lattice Parameter(s) at 300K 0.436 nm a0=0.3111 nm
c0 = 0.4978 nm
Density at 300K 3.285 g.cm-3 3.255 g.cm-3
Elastic Moduli at 300 K . . . . . .
Linear Therm. Expansion Coeff.
at 300 K
. . . Along a0: 5.3x10-6 K-1
Along c0: 4.2x10-6 K-1
Calculated Spontaneous Polarisations Not Applicable – 0.081 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Calculated Piezo-electric Coefficients Not Applicable e33 = + 1.46 C m-2
e31 = – 0.60 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Phonon Energies . . . . . .
Thermal Conductivity
near 300K
. . . Units: Wcm-1K-1


Tansley et al 1997b


3.0 to 3.3
for thick, free-standing AlN
Florescu et al, 2001
Melting Point . . . . . .. K
Dielectric Constant
at Lowish Frequency
. . . Mean = 9.14
Refractive Index . . . 2.15±0.05 at 3eV
Tansley et al 1997b
Nature of Energy Gap Eg Direct Direct
Energy Gap Eg at 300 K . . . eV 6.2 eV
Yoshida et al 1982
Vurgaftman et al (2001)
Energy Gap Eg at 5 K . . . 6.28 eV
Vurgaftman et al (2001)
Intrinsic Carrier Conc. at 300 K . . . . . .
Ionisation Energy of . . . Donor . . . . . . .
Electron Mobility at 300 K
for n= . .
. . . . . .
Electron Mobility at 77 K
for n= . .
. . . . . . .
Ionisation Energy of . . . Acceptor . . . . . .
Hole Mobility at 300 K
for p= . .
. . . . . . . .
Hole Mobility at 77 K
for p=. . .
. . . . . . .
. Cubic (Beta) AlN Hexagonal (Alpha) AlN



Return to Top of this Page


Return to "SEMICONDUCTORS INFORMATION" Home Page



PROPERTY / MATERIAL
.
Cubic (Beta) GaN
.
Hexagonal (Alpha) GaN
.
Structure Zinc Blende Wurzite
Space Group F bar4 3m C46v ( = P63mc)
Stability Meta-stable Stable
Lattice Parameter(s) at 300K 0.450 nm a0 = 0.3189 nm
c0 = 0.5185 nm
Density at 300K 6.10 g.cm-3 6.095 g.cm-3
Elastic Moduli at 300 K . . . . . .
Linear Thermal Expansion Coeff.
at 300 K
. . . Along a0: 5.59x10-6 K-1
Along c0: 7.75x10-6 K-1
Calculated Spontaneous Polarisations Not Applicable – 0.029 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Calculated Piezo-electric Coefficients Not Applicable e33 = + 0.73 C m-2
e31 = – 0.49 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Phonon Energies TO: 68.9 meV
LO: 91.8 meV
A1(TO): 66.1 meV
E1(TO): 69.6 meV
E2: 70.7 meV
A1(LO): 91.2 meV
E1(LO): 92.1 meV
Debye Temperature   600K (estimated)
Slack, 1973
Thermal Conductivity
near 300K
. . . Units: Wcm-1K-1

1.3,
Tansley et al 1997b


2.2±0.2
for thick, free-standing GaN
Vaudo et al, 2000


2.1 (0.5)
for LEO material
where few (many) dislocations
Florescu et al, 2000, 2001


circa 1.7 to 1.0
for n=1x1017 to 4x1018cm-3
in HVPE material
Florescu, Molnar et al, 2000


2.3 ± 0.1
in Fe-doped HVPE material
of ca. 2 x108 ohm-cm,
& dislocation density ca. 105 cm-2
(effects of T & dislocation density also given).
Mion et al, 2006a, 2006b


Melting Point . . . . . .
Dielectric Constant
at Low/Lowish Frequency
. . . Along a0: 10.4
Along c0: 9.5
Refractive Index 2.9 at 3eV
Tansley et al 1997b
2.67 at 3.38eV
Tansley et al 1997b
Nature of Energy Gap Eg Direct Direct
Energy Gap Eg at 1237K   2.73 eV
Ching-Hua Su et al, 2002
Energy Gap Eg at 293-1237 K   3.556 - 9.9x10-4T2 / (T+600) eV
        Ching-Hua Su et al, 2002
Energy Gap Eg at 300 K 3.23 eV
Ramirez-Flores et al 1994

.
3.25 eV
Logothetidis et al 1994
3.44 eV
Monemar 1974

.
3.45 eV
Koide et al 1987

.
3.457 eV
Ching-Hua Su et al, 2002
Energy Gap Eg at ca. 0 K 3.30 eV
Ramirez-Flores et al1994
Ploog et al 1995
3.50 eV
Dingle et al 1971
Monemar 1974
Intrinsic Carrier Conc. at 300 K . . . . . .
Ionisation Energy of . . . Donor . . . . . . .
Electron effective mass me* / m0 . . . 0.22
Moore et al, 2002
Electron Mobility at 300 K
for n = 1x1017 cm-3:
for n = 1x1018 cm-3:
for n = 1x1019 cm-3:
. . . .
ca. 500 cm2V-1s-1
ca. 240 cm2V-1s-1
ca. 150 cm2V-1s-1

Rode & Gaskill, 1995
Tansley et al 1997a
Electron Mobility at 77 K
for n = . .
. . . . . . .
Ionisation Energy of Acceptors . . . Mg: 160 meV
Amano et al 1990


Mg: 171 meV
Zolper et al 1995


Ca: 169 meV
Zolper et al 1996

Hole Hall Mobility at 300 K
for p= . . .
. . . . . . .
Hole Hall Mobility at 77 K
for p= . . .
. . . . . . .
. Cubic (Beta) GaN Hexagonal (Alpha) GaN



Return to Top of this Page

Return to "SEMICONDUCTORS INFORMATION" Home Page



PROPERTY / MATERIAL
.
Cubic (Beta) InN
.
Hexagonal (Alpha) InN
.
Structure Zinc Blende Wurzite
Space Group F bar4 3m C46v ( = P63mc)
Stability Meta-stable Stable
Lattice Parameter(s) at 300K 0.498 nm a0 = 0.3544 nm
c0 = 0.5718nm
Density at 300K 6.93 g.cm-3 6.81 g.cm-3
Elastic Moduli at 300 K . . . . . .
Linear Therm. Expansion Coeff.
at 300 K
. . . ca. 4 x 10-6 K-1
Tansley et al 1997b
Calculated Spontaneous Polarisations Not Applicable – 0.032 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Calculated Piezo-electric Coefficients Not Applicable e33 = + 0.97 C m-2
e31 = – 0.57 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Elastic Moduli at 300 K . . . . . .
Phonon Energies . . . . . .
Thermal Conductivity . . . 0.8±0.2 Wcm-1K-1
Tansley et al 1997b
Melting Point . . . . . .. K
Dielectric Constant
at Low/Lowish Frequency
. . . ca. 15
Tansley et al 1997b
Refractive Index . . . 2.9-3.05
Tansley et al 1997b
Nature of Energy Gap Eg Direct Direct
Energy Gap Eg at 300K. . . . . . .
Energy Gap Eg at 2K
Some Details of Publications
that considered the InN band-gap.
. . .
.
0.692±0.002eV
Arnaudov et al 2004

.
Intrinsic Carrier Conc. at 300 K . . . . . .
Ionisation Energy of . . . Donor . . . . . .
Electron Hall Mobility at 300 K
for n= . . .
. . . . . . .
Electron Hall Mobility at 77 K
for n= . . .
. . . . . . .
Ionisation Energy of . . . Acceptor . . . . . .
Hole Hall Mobility at 300 K
for p= . . .
. . . . . . . .
Hole Hall Mobility at 77 K
for p=
. . . . . . .
. Cubic (Beta) InN Hexagonal (Alpha) InN

 







































LINKS


































LINKS





Return to Top of this Page

Return to the "SEMICONDUCTORS INFORMATION" Home Page


  INDIVIDUAL REFERENCES :
Amano H, Kitoh M, Hiramatsu H & Akasaki I, 1990, J.Electrochem.Soc. 137, 1639
Arnaudov B, Pashkova t, Paskov PP, Magnusson B, Valcheva E, Monemar B,
. . . . Lu H, Schaff WJ, Amano H and Akasaki I, Phys. Rev. B 69 (March 2004) 115216
Bernardini F, Fiorentini V and Vanderbilt D, 1997, Phys. Rev. B 56, R10024
Bernardini F and Fiorentini V, 1999, phys. stat. sol. 216, 391
. . . . (Proc. Internat. Conf. on Nitride Semiconductors, 1999, Montpellier, France)
Ching-Hua Su et al, 2002, J. of Crystal Growth 235, 111-114
Dingle R, Sell DD, Stokowski SE and Ilegems M, 1971, Phys.Rev.B 4, 1211
Florescu D I et al, 2000, Appl.Phys.Lett. 77, 1464
Florescu D I, Molnar R J et al, 2000, J.Appl.Phys 88, 3295
Florescu D I, Asnin V M and Pollak F H, (2001) Compound Semiconductor 7, 62 (a review)
Logothetidis S, Petals J, Cardona M and Moustakes TD, 1994, Phys.Rev.B 50, 18017
Mion C, Muth J F, Preble E A & Hanser D, 2006a, Appl.Phys.Lett. 89, 092123
Mion C, Muth J F, Preble E A & Hanser D, 2006b, Superlattices & Microstructures 40, 338
Monemar B, 1974, Phys.Rev.B 10, 676
Moore W J, Freitas J A Jnr, Lee S K, Paark S S and Han J Y, 2002, Phys Rev B 65, 081201
Ploog K H, Brandt O, Yang H, Menniger J and Klann R, 1995,
. . . . Proc. TWN-95 Conference, Nagoya, Japan, Sept 1995 : published in Solid State Electronics.
Ramirez-Flores G, Navarro-Contreras H, Lastras-Martinez A, Powell RC and Greene J E,
. . . . 1974, Phys.Rev.B 50, 8433
Rode D L & Gaskill D K, 1995, Appl.Phys.Lett. 66, 1972
Slack G A, , 1973, J. Phys. Chem. Solids 34, 321
Vaudo R et al, International Workshop on Nitride Semiconductors, Japan, 2000
Vurgaftman I, Meyer J R and Ram-Mohan L R (2001), J.Appl.Phys. 89, 5815
Zopler J C, Hagerott-Crawford M, Pearton S J, Abernathy C R, Vartuli C B, Yuan C & Stall R A, 1996,
. . . . J.Electron.Mat. 25, 839
Zopler J C, Wilson R G, Pearton S J & Stall R A, 1996,
. . . . Appl. Phys. Lett. 68, 1945

BOOKS :
A-B Chen and A Sher, "Semiconductor Alloys - Physics and Materials Engineering" (Plenum, 1995)
S Nakumura and G Fasol, "The Blue Laser Diode - GaN Based Light Emitters and Lasers" (Springer, 1997)
S J Pearton (Ed.), "GaN and Related Materials" (Gordon and Breach, 1997)


The Web-Site of the UK Nitrides Consortium




Return to Top of this Page


Return to "SEMICONDUCTORS INFORMATION" Home Page


© D.W.Palmer, 1999-2015             Our Privacy Policy